Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
Kyobu Geka ; 77(2): 136-139, 2024 Feb.
Artigo em Japonês | MEDLINE | ID: mdl-38459863

RESUMO

A 67-year-old male was admitted to our hospital for sudden onset chest pain and hoarseness. He underwent 2-debranching thoracic endovascular aortic repair for a ruptured aortic arch aneurysm four years prior. However, computed tomography (CT) revealed an aneurysmal rerupture due to a typeⅠa endoleak. We performed partial arch replacement with uncovered stent removal under intermittent hypothermic circulatory arrest. We needed to be more careful than usual open heart surgery because a non-anatomical bypass procedure was performed. The surgery was successful without any major complications, and the patient was discharged on the 23th postoperative day. Reinterventions post-endovascular repair are sometimes difficult;thus, open surgery could be useful for arch replacement.


Assuntos
Aneurisma do Arco Aórtico , Aneurisma da Aorta Torácica , Implante de Prótese Vascular , Procedimentos Endovasculares , Masculino , Humanos , Idoso , Endoleak/diagnóstico por imagem , Endoleak/etiologia , Endoleak/cirurgia , Correção Endovascular de Aneurisma , Aneurisma da Aorta Torácica/diagnóstico por imagem , Aneurisma da Aorta Torácica/cirurgia , Aneurisma da Aorta Torácica/complicações , Implante de Prótese Vascular/efeitos adversos , Stents/efeitos adversos , Resultado do Tratamento , Aorta Torácica/diagnóstico por imagem , Aorta Torácica/cirurgia , Prótese Vascular/efeitos adversos , Estudos Retrospectivos
2.
Biomolecules ; 14(2)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38397461

RESUMO

We previously reported that acid-degradable methylated ß-cyclodextrins (Me-ß-CDs)-threaded polyrotaxanes (Me-PRXs) can induce autophagic cell death through endoplasmic reticulum (ER) stress-related autophagy, even in apoptosis-resistant cells. Hence, Me-PRXs show great potential as anticancer therapeutics. In this study, peptide-supermolecule conjugates were designed to achieve the targeted delivery of Me-PRX to malignant tumors. Arg-Gly-Asp peptides are well-known binding motifs of integrin αvß3, which is overexpressed on angiogenic sites and many malignant tumors. The tumor-targeted cyclic Arg-Gly-Asp (cRGD) peptide was orthogonally post-modified to Me-PRX via click chemistry. Surface plasmon resonance (SPR) results indicated that cRGD-Me-PRX strongly binds to integrin αvß3, whereas non-targeted cyclic Arg-Ala-Glu (cRGE) peptide conjugated to Me-PRX (cRGE-Me-PRX) failed to interact with integrins αvß3. In vitro, cRGD-Me-PRX demonstrated enhanced cellular internalization and antitumor activity in 4T1 cells than that of unmodified Me-PRX and non-targeted cRGE-Me-PRX, due to its ability to recognize integrin αvß3. Furthermore, cRGD-Me-PRX accumulated effectively in tumors, leading to antitumor effects, and exhibited excellent biocompatibility and safety in vivo. Therefore, cRGD conjugation to enhance selectivity for integrin αvß3-positive cancer cells is a promising design strategy for Me-PRXs in antitumor therapy.


Assuntos
Neoplasias , Peptídeos Cíclicos , Rotaxanos , beta-Ciclodextrinas , Humanos , Rotaxanos/farmacologia , Rotaxanos/química , Rotaxanos/metabolismo , beta-Ciclodextrinas/química , Oligopeptídeos/química , Neoplasias/tratamento farmacológico , Integrinas
3.
EMBO Rep ; 25(3): 1176-1207, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316902

RESUMO

For mucociliary clearance of pathogens, tracheal multiciliated epithelial cells (MCCs) organize coordinated beating of cilia, which originate from basal bodies (BBs) with basal feet (BFs) on one side. To clarify the self-organizing mechanism of coordinated intracellular BB-arrays composed of a well-ordered BB-alignment and unidirectional BB-orientation, determined by the direction of BB to BF, we generated double transgenic mice with GFP-centrin2-labeled BBs and mRuby3-Cep128-labeled BFs for long-term, high-resolution, dual-color live-cell imaging in primary-cultured tracheal MCCs. At early timepoints of MCC differentiation, BB-orientation and BB-local alignment antecedently coordinated in an apical microtubule-dependent manner. Later during MCC differentiation, fluctuations in BB-orientation were restricted, and locally aligned BB-arrays were further coordinated to align across the entire cell (BB-global alignment), mainly in an apical intermediate-sized filament-lattice-dependent manner. Thus, the high coordination of the BB-array was established for efficient mucociliary clearance as the primary defense against pathogen infection, identifying apical cytoskeletons as potential therapeutic targets.


Assuntos
Corpos Basais , Citoesqueleto , Camundongos , Animais , Microtúbulos , Cílios , Células Epiteliais
4.
RSC Adv ; 14(6): 3798-3806, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38274164

RESUMO

Cyclodextrin (CD)-based polyrotaxanes (PRXs) are supramolecular polymers comprising multiple CDs mechanically interlocked onto a linear polymer chain by capping the polymer ends with bulky stoppers. Among various PRX derivatives, propionylated PRXs (Pr-PRXs) composed of propionylated α-CD and high molecular-weight poly(ethylene glycol) (PEG) form self-assembled nanoparticles in aqueous solution through hydrophobic interactions. Although Pr-PRX nanoparticles can encapsulate hydrophobic drugs in their hydrophobic domains, their release rate is limited. To improve the efficiency of drug release from Pr-PRX nanoparticles, ultraviolet (UV) light-dissociable Pr-PRXs were designed using 4,5-dimethoxy 2-nitrobenzyl groups as UV-cleavable bulky stopper molecules to facilitate UV-induced drug release. Photodegradable Pr-PRX (Pr-PD-PRX) was synthesized, and its UV-induced dissociation was examined. Pr-PD-PRX was completely dissociated via UV irradiation (365 nm) for 30 min. Additionally, Pr-PD-PRX nanoparticles encapsulating hydrophobic drugs collapsed upon UV irradiation, which promoted the release of the encapsulated drugs compared to non-degradable Pr-PRX nanoparticles. UV irradiation of drug-loaded Pr-PD-PRX nanoparticles resulted in higher cytotoxicity than non-irradiated Pr-PD-PRX and non-degradable Pr-PRX. Consequently, designing photodegradable PRX-based nanoparticles provides new insights into developing photoresponsive drug carriers and smart biomedical materials.

5.
J Exp Med ; 220(11)2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37725372

RESUMO

Accumulation of lipotoxic lipids, such as free cholesterol, induces hepatocyte death and subsequent inflammation and fibrosis in the pathogenesis of nonalcoholic steatohepatitis (NASH). However, the underlying mechanisms remain unclear. We have previously reported that hepatocyte death locally induces phenotypic changes in the macrophages surrounding the corpse and remnant lipids, thereby promoting liver fibrosis in a murine model of NASH. Here, we demonstrated that lysosomal cholesterol overload triggers lysosomal dysfunction and profibrotic activation of macrophages during the development of NASH. ß-cyclodextrin polyrotaxane (ßCD-PRX), a unique supramolecule, is designed to elicit free cholesterol from lysosomes. Treatment with ßCD-PRX ameliorated cholesterol accumulation and profibrotic activation of macrophages surrounding dead hepatocytes with cholesterol crystals, thereby suppressing liver fibrosis in a NASH model, without affecting the hepatic cholesterol levels. In vitro experiments revealed that cholesterol-induced lysosomal stress triggered profibrotic activation in macrophages predisposed to the steatotic microenvironment. This study provides evidence that dysregulated cholesterol metabolism in macrophages would be a novel mechanism of NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Modelos Animais de Doenças , Cirrose Hepática , Macrófagos , Colesterol , Lisossomos
6.
Biomolecules ; 13(6)2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37371483

RESUMO

Activation of autophagy represents a potential therapeutic strategy for the treatment of diseases that are caused by the accumulation of defective proteins and the formation of abnormal organelles. Methylated ß-cyclodextrins-threaded polyrotaxane (Me-PRX), a supramolecular structured polymer, induces autophagy by interacting with the endoplasmic reticulum. We previously reported on the successful activation of mitochondria-targeted autophagy by delivering Me-RRX to mitochondria using a MITO-Porter, a mitochondria-targeted nanocarrier. The same level of autophagy induction was achieved at one-twentieth the dosage for the MITO-Porter (Me-PRX) compared to the naked Me-PRX. We report herein on the quantitative evaluation of the intracellular organelle localization of both naked Me-PRX and the MITO-Porter (Me-PRX). Mitochondria, endoplasmic reticulum and lysosomes were selected as target organelles because they would be involved in autophagy induction. In addition, organelle injury and cell viability assays were performed. The results showed that the naked Me-PRX and the MITO-Porter (Me-PRX) were localized in different intracellular organelles, and organelle injury was different, depending on the route of administration, indicating that different organelles contribute to autophagy induction. These findings indicate that the organelle to which the autophagy-inducing molecules are delivered plays an important role in the level of induction of autophagy.


Assuntos
Rotaxanos , beta-Ciclodextrinas , beta-Ciclodextrinas/farmacologia , Rotaxanos/metabolismo , Rotaxanos/farmacologia , Mitocôndrias/metabolismo , Lisossomos/metabolismo , Transporte Biológico , Autofagia
8.
Biomacromolecules ; 24(5): 2327-2341, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37036902

RESUMO

Acid-degradable polyrotaxanes (PRXs) containing threading ß-cyclodextrins (ß-CDs) are promising candidates for therapeutic applications of ß-CDs in metabolic diseases with cholesterol overload or imbalance. To improve cellular uptake specificity and efficiency of PRXs in hepatocytes, N-acetyl-d-galactosamine (GalNAc)-modified PRXs were developed to facilitate asialoglycoprotein receptor (ASGR)-mediated endocytosis. Binding affinity studies revealed that the dissociation constant (KD) values between recombinant ASGR and GalNAc-PRXs decreased with an increase in the number of modified GalNAc units. Additionally, the KD values for GalNAc-PRXs were smaller than those for GalNAc-modified ß-CD and amylose, suggesting that the PRX backbone structure improves the binding affinity with ASGR. However, the intracellular uptake levels of GalNAc-PRXs in HepG2 cells increased with a decrease in the number of modified GalNAc units, which was opposite to the trend observed in the binding affinity study. We found that GalNAc-PRXs had a large number of GalNAc units localized in recycling endosomes, resulting in the low intracellular uptake. The cholesterol-reducing abilities of GalNAc-PRXs were assessed using cholesterol-overloaded HepG2 cells. GalNAc-PRXs with a small number of GalNAc units were demonstrated to show superior cholesterol-reducing effects compared to previously designed acid-degradable PRX and clinically tested ß-CD derivatives. Thus, we conclude that GalNAc modification is a promising molecular design for the therapeutic application of ß-CD-threaded PRXs in various metabolic diseases with cholesterol overload or imbalance in the liver.


Assuntos
Rotaxanos , beta-Ciclodextrinas , Rotaxanos/química , Acetilgalactosamina , Galactosamina , beta-Ciclodextrinas/química , Hepatócitos/metabolismo , Fígado/metabolismo , Ácidos , Receptor de Asialoglicoproteína , Colesterol/metabolismo
9.
Molecules ; 28(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36985487

RESUMO

Doxorubicin (DOX)-conjugated acid-degradable polyrotaxanes (PRXs) were designed as supramolecular drug carriers capable of releasing drugs in acidic cellular environments. Acid-degradable PRXs composed of α-cyclodextrin (α-CD) as a cyclic molecule, poly(ethylene glycol) (PEG) as a polymer axis, and N-triphenylmethyl (N-Trt) groups as an acid-labile stopper molecules were synthesized and DOX was conjugated with the threaded α-CDs in the PRXs. Because the acid-induced cleavage of N-Trt groups in PRXs leads to PRX dissociation, the DOX-modified α-CDs were released under acidic conditions (pH 5.0). The cytotoxicity of DOX-conjugated PRXs in colon-26 cells revealed significant cell death for DOX-conjugated PRXs after 48 h of treatment. Confocal laser scanning microscopy (CLSM) analysis revealed that the fluorescence signals derived from DOX-conjugated PRXs were observed in cellular nuclei after 48 h, suggesting that the DOX-modified α-CDs were released and accumulated in cellular nuclei. These results confirmed that acid-degradable PRXs can be utilized as drug carriers capable of releasing drug-modified α-CDs in acidic lysosomes and eliciting cytotoxicity. Overall, acid-degradable PRXs represent a promising supramolecular framework for the delivery and intracellular release of drug-modified α-CDs, and PRX-drug conjugates are expected to contribute to the development of pH-responsive drug carriers for cancer therapy.


Assuntos
Rotaxanos , Rotaxanos/química , Doxorrubicina/química , Polietilenoglicóis/química , Portadores de Fármacos/química , Ácidos , Concentração de Íons de Hidrogênio
10.
Ann N Y Acad Sci ; 1523(1): 51-61, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37002535

RESUMO

Hair follicles (HFs) undergo cyclic phases of growth, regression, and rest in association with hair shafts to maintain the hair coat. Nonsense mutations in the tight junction protein claudin (CLDN)-1 cause hair loss in humans. Therefore, we evaluated the roles of CLDNs in hair retention. Among the 27 CLDN family members, CLDN1, CLDN3, CLDN4, CLDN6, and CLDN7 were expressed in the inner bulge layer, isthmus, and sebaceous gland of murine HFs. Hair phenotypes were observed in Cldn1 weaker knockdown and Cldn3-knockout (Cldn1Δ/Δ Cldn3-/- ) mice. Although hair growth was normal, Cldn1Δ/Δ Cldn3-/- mice showed striking hair loss in the first telogen. Simultaneous deficiencies in CLDN1 and CLDN3 caused abnormalities in telogen HFs, such as an aberrantly layered architecture of epithelial cell sheets in bulges with multiple cell layers, mislocalization of bulges adjacent to sebaceous glands, and dilated hair canals. Along with the telogen HF abnormalities, which shortened the hair retention period, there was an enhanced proliferation of the epithelium surrounding HFs in Cldn1Δ/Δ Cldn3-/- mice, causing accelerated hair regrowth in adults. Our findings suggested that CLDN1 and CLDN3 may regulate hair retention in infant mice by maintaining the appropriate layered architecture of HFs, a deficiency of which can lead to alopecia.


Assuntos
Alopecia , Animais , Camundongos , Alopecia/genética , Claudina-1/genética , Claudina-1/metabolismo , Claudina-3/genética , Claudina-3/metabolismo , Claudina-4/metabolismo , Mutação , Envelhecimento
11.
Cardiovasc Revasc Med ; 52: 67-74, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36870799

RESUMO

As medical device development becomes increasingly global, the opportunities and potential advantages offered by international clinical trial and regulatory approval strategies are also growing. In particular, medical device clinical trials involving sites in both the United States and Japan and intended to support marketing in both countries may warrant particular consideration, given the similarities in their regulatory systems, patients and clinical practice patterns, and market sizes. Since 2003, the US-Japan Harmonization By Doing (HBD) initiative has been focused on identifying and addressing clinical and regulatory barriers to medical devices access in both countries via collaboration between governmental, academic, and industry stakeholders. Through the efforts of HBD participants, US-Japanese clinical trials have been conducted and the resulting data have supported regulatory approval for marketing in both countries. Based on these experiences, this paper outlines some of the key factors to consider when developing a global clinical trial involving US and Japanese participation. These considerations include the mechanisms for consultation with regulatory authorities on clinical trial strategies, the regulatory framework for clinical trial notification and approval, recruitment and conduct of clinical sites, and lessons learned from specific US-Japanese clinical trial experiences. The goal of this paper is to promote global access to promising medical technologies by assisting potential clinical trial sponsors in understanding when an international strategy may be appropriate and successful.


Assuntos
Aprovação de Equipamentos , Humanos , Estados Unidos , Japão
12.
Sci Rep ; 13(1): 2892, 2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36806348

RESUMO

Blood-brain barrier (BBB) disruption contributes to brain injury and neurological impairment. Tight junctions (TJs) and cell-cell adhesion complexes develop between endothelial cells in the brain to establish and maintain the BBB. Occludin, the first transmembrane protein identified in TJs, has received intense research interest because numerous in vitro studies have suggested its importance in maintaining BBB integrity. However, its role in maintaining BBB integrity after ischemic stroke is less clear owing to the lack of in vivo evidence. This study aimed to investigate the dynamics and function of occludin across the acute and chronic phases after stroke using occludin-deficient mice. By photochemically induced thrombosis model, the expression of occludin was decreased in brain endothelial cells from ischemic lesions. The neurological function of occludin-deficient mice was continuously impaired compared to that of wild-type mice. BBB integrity evaluated by Evans blue and 0.5-kDa fluorescein in the acute phase and by 10-kDa fluorescein isothiocyanate-labeled dextran in the chronic phase was decreased to a greater extent after stroke in occludin-deficient mice. Furthermore, occludin-deficient mice showed decreased claudin-5 and neovascularization after stroke. Our study reveals that occludin plays an important role from the acute to the chronic phase after ischemic stroke in vivo.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Animais , Camundongos , Ocludina/genética , Proteínas de Junções Íntimas , Barreira Hematoencefálica , Células Endoteliais , Fluoresceína
13.
Sci Adv ; 9(7): eadf6358, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36791197

RESUMO

Liquid-liquid phase separation (LLPS) is involved in various dynamic biological phenomena. In epithelial cells, dynamic regulation of junctional actin filaments tethered to the apical junctional complex (AJC) is critical for maintaining internal homeostasis against external perturbations; however, the role of LLPS in this process remains unknown. Here, after identifying a multifunctional actin nucleator, cordon bleu (Cobl), as an AJC-enriched microtubule-associated protein, we conducted comprehensive in vitro and in vivo analyses. We found that apical microtubules promoted LLPS of Cobl at the AJC, and Cobl actin assembly activity increased upon LLPS. Thus, microtubules spatiotemporally regulated junctional actin assembly for epithelial morphogenesis and paracellular barriers. Collectively, these findings established that LLPS of the actin nucleator Cobl mediated dynamic microtubule-actin cross-talk in junctions, which fine-tuned the epithelial barrier.


Assuntos
Actinas , Proteínas dos Microfilamentos , Actinas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Citoesqueleto de Actina/metabolismo , Junções Intercelulares , Microtúbulos/metabolismo
14.
J Phys Ther Sci ; 35(2): 151-155, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36744199

RESUMO

[Purpose] This study investigated the effects of transcutaneous electrical nerve stimulation on trunk extension muscle strength, walking ability, and the Japanese Orthopedic Association Back Pain Evaluation Questionnaire items of gait disturbance in one case of a subacute osteoporotic vertebral fracture. [Participant and Methods] An 88-year-old female with the first and third lumbar vertebral fractures underwent standard physical therapy (A1 and A2 phases) and transcutaneous electrical nerve stimulation to the sclerotome region of the fractured vertebra (B1 and B2 phases). Assessments were performed before the A1 phase and the day after each phase. Assessment items included the Visual Analog Scale scores for pain during rest, getting up, standing up, and walking; isometric trunk extension muscle strength; walking ability (10-meter walking, continuous walking distance); and the Japanese Orthopedic Association Back Pain Evaluation Questionnaire items. [Results] Even though the pain intensity did not change, isometric trunk extension muscle strength, continuous walking distance, and the Japanese Orthopedic Association Back Pain Evaluation Questionnaire items of gait disturbance were improved in phase B compared to phase A. [Conclusion] Standard physical therapy and transcutaneous electrical nerve stimulation to the sclerotome area may improve trunk extension muscle strength, walking ability, and the Japanese Orthopedic Association Back Pain Evaluation Questionnaire items of gait disturbance in patients with subacute osteoporotic vertebral fractures.

15.
JCI Insight ; 7(22)2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36509286

RESUMO

Recent studies have shown that cellular metabolism is tightly linked to the regulation of immune cells. Here, we show that activation of cholesterol metabolism, involving cholesterol uptake, synthesis, and autophagy/lipophagy, is integral to innate immune responses in macrophages. In particular, cholesterol accumulation within endosomes and lysosomes is a hallmark of the cellular cholesterol dynamics elicited by Toll-like receptor 4 activation and is required for amplification of myeloid differentiation primary response 88 (Myd88) signaling. Mechanistically, Myd88 binds cholesterol via its CLR recognition/interaction amino acid consensus domain, which promotes the protein's self-oligomerization. Moreover, a novel supramolecular compound, polyrotaxane (PRX), inhibited Myd88­dependent inflammatory macrophage activation by decreasing endolysosomal cholesterol via promotion of cholesterol trafficking and efflux. PRX activated liver X receptor, which led to upregulation of ATP binding cassette transporter A1, thereby promoting cholesterol efflux. PRX also inhibited atherogenesis in Ldlr-/- mice. In humans, cholesterol levels in circulating monocytes correlated positively with the severity of atherosclerosis. These findings demonstrate that dynamic changes in cholesterol metabolism are mechanistically linked to Myd88­dependent inflammatory programs in macrophages and support the notion that cellular cholesterol metabolism is integral to innate activation of macrophages and is a potential therapeutic and diagnostic target for inflammatory diseases.


Assuntos
Aterosclerose , Macrófagos , Camundongos , Humanos , Animais , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Macrófagos/metabolismo , Aterosclerose/metabolismo , Colesterol/metabolismo , Receptores X do Fígado/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo
16.
Biomacromolecules ; 23(11): 4860-4871, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36206115

RESUMO

Polyrotaxanes (PRXs) containing acetylated α-cyclodextrins exhibit a temperature-dependent phase transition in aqueous solutions across their lower critical solution temperature (LCST) of approximately 26.6 °C. To gain insights into the interactions of acetylated PRXs (Ac-PRXs) with biological components, thermoresponsive supramolecular surfaces were prepared by coating tissue culture polystyrene (TCPS) surfaces with Ac-PRX triblock copolymers, and their surface properties across the LCST were evaluated. The wettability and protein adsorption of Ac-PRX-coated surfaces changed significantly between 10 and 37 °C, whereas the uncoated TCPS and unmodified PRX-coated surfaces did not alter the wettability and protein adsorption at 10 and 37 °C. The adhesion, proliferation, morphology, and adhesion strength of NIH/3T3 cells on Ac-PRX-coated surfaces were found to be similar to those of the uncoated and unmodified PRX-coated surfaces. However, the adhesion strength of NIH/3T3 cells on Ac-PRX-coated surfaces decreased drastically at 10 °C. Consequently, the cells spontaneously detached from the Ac-PRX-coated surfaces without enzymatic treatment. Additionally, when incubating confluent cells at 10 °C, the cells detached from Ac-PRX-coated surfaces as cell sheets while retaining extracellular matrix proteins. The findings of this study provide new directions for the design of thermoresponsive supramolecular biointerfaces for applications in bioseparation and cell manipulation.


Assuntos
Rotaxanos , Animais , Camundongos , Adesão Celular , Poloxâmero , Polímeros/farmacologia , Propriedades de Superfície
17.
Biomater Sci ; 10(18): 5230-5242, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-35904082

RESUMO

Free cholesterol acts as an endogenous agonist for estrogen-related receptor α (ERRα), a nuclear receptor that regulates osteoclastogenesis. Because stimulation of macrophages with receptor activator of nuclear factor κB ligand (RANKL) induces an overload of free cholesterol and activates ERRα, we hypothesized that direct removal of cellular cholesterol would suppress osteoclastogenesis. In this study, the effect of 2-hydroxypropyl ß-cyclodextrin (HP-ß-CD), a highly water-soluble cyclic glucopyranose, and ß-CD-threaded polyrotaxanes (PRXs), supramolecular polymers designed to release threaded ß-CDs in acidic lysosomes, on RANKL-induced cholesterol overload and osteoclast differentiation of murine macrophage-like RAW264.7 cells were investigated. PRXs suppressed RANKL-induced cholesterol overload. Additionally, RANKL-induced osteoclast differentiation of RAW264.7 cells was inhibited by PRXs. In contrast, HP-ß-CD did not reduce cholesterol levels or inhibit osteoclast differentiation in RAW264.7 cells. Gene expression analysis of osteoclast markers suggested that PRXs suppress only the early stage of osteoclast differentiation, as PRXs cannot be internalized into multinucleated osteoclasts. However, modification of PRXs with cell-penetrating peptides facilitated their cellular uptake into multinucleated osteoclasts and inhibited osteoclast maturation. Thus, PRXs are promising candidates for inhibiting osteoclast differentiation by suppressing cholesterol overload and may be useful for treating osteoporosis or other bone defects caused by the overactivity of osteoclasts.


Assuntos
Rotaxanos , beta-Ciclodextrinas , 2-Hidroxipropil-beta-Ciclodextrina/metabolismo , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Animais , Diferenciação Celular , Colesterol/farmacologia , Macrófagos , Camundongos , Osteoclastos , Osteogênese , Ligante RANK/metabolismo , Ligante RANK/farmacologia , Rotaxanos/química , Rotaxanos/farmacologia , beta-Ciclodextrinas/metabolismo , beta-Ciclodextrinas/farmacologia
18.
ACS Biomater Sci Eng ; 8(6): 2463-2476, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35536230

RESUMO

ß-Cyclodextrins (ß-CDs) and ß-CD-containing polymers have attracted considerable attention as potential candidates for the treatment of cholesterol-related metabolic and intractable diseases. We have advocated the use of ß-CD-threaded acid-degradable polyrotaxanes (PRXs) as intracellular delivery carriers for ß-CDs. As unmodified PRXs are insoluble in aqueous solutions, chemical modification of PRXs is an essential process to improve their solubility and impart novel functionalities. In this study, we investigated the effect of the modification of zwitterionic sulfobetaines on PRXs due to their excellent solubility, biocompatibility, and bioinert properties. Sulfobetaine-modified PRXs were synthesized by converting the tertiary amino groups of precursor 2-(N,N-dimethylamino)ethyl carbamate-modified PRXs (DMAE-PRXs) using 1,3-propanesultone. The resulting sulfobetaine-modified PRXs showed high solubility in aqueous solutions and no cytotoxicity, while their intracellular uptake levels were low. To further improve this system, we designed PRXs cografted with zwitterionic sulfobetaine and cationic DMAE groups via partial betainization of the DMAE groups. Consequently, the interaction with proteins, intracellular uptake levels, and liver accumulation of partly betainized PRXs were found to be higher than those of completely betainized PRXs. Additionally, partly betainized PRXs showed no toxicity in vitro or in vivo despite the presence of residual cationic DMAE groups. Furthermore, partly betainized PRXs ameliorated the abnormal free cholesterol accumulation in Niemann-Pick type C disease patient-derived cells at lower concentrations than ß-CD derivatives and previously designed PRXs. Overall, the cografting of sulfobetaines and amines on PRXs is a promising chemical modification for therapeutic applications due to the high cholesterol-reducing ability and biocompatibility of such modified PRXs. In addition, modification with both zwitterionic and cationic groups can be used for the design of various polymeric materials exhibiting both bioinert and bioactive characteristics.


Assuntos
Rotaxanos , beta-Ciclodextrinas , Aminas , Betaína/análogos & derivados , Cátions , Colesterol/metabolismo , Humanos , Rotaxanos/química , Rotaxanos/metabolismo , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacologia
19.
Dent Mater J ; 41(4): 624-632, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35584937

RESUMO

Recently, the potential of ß-cyclodextrin-thread acid-degradable polyrotaxane (AdPRX) has been emphasized as a therapeutic agent for cholesterol-related metabolic disorders. In this study, we investigated whether carboxymethyl carbamate-modified AdPRX (CMC-AdPRX) can be used for adsorption to calcium phosphate to treat bone diseases. We first synthesized CMC-AdPRX and used it to coat the calcium phosphate plate. RAW264.7 cells were then differentiated into osteoclasts via a receptor activator of nuclear factor-κB ligand, and the number of osteoclasts and the area of absorption lacunae were determined. The number of tartrate-resistant acid phosphatase-positive multinucleated cells was reduced on the CMC-AdPRX-coated plate. The area of the absorption lacunae was smaller with CMC-AdPRX than with AdPRX, which was not carboxy-modified. Our results suggest that CMC-AdPRX can adsorb to calcium phosphate and act on differentiated osteoclasts to suppress their functional expression.


Assuntos
Reabsorção Óssea , Rotaxanos , beta-Ciclodextrinas , Fosfatase Ácida/metabolismo , Animais , Fosfatos de Cálcio/farmacologia , Diferenciação Celular , Isoenzimas/metabolismo , Camundongos , Osteoclastos/metabolismo , Ligante RANK/metabolismo , Células RAW 264.7 , Rotaxanos/farmacologia , Fosfatase Ácida Resistente a Tartarato/metabolismo , beta-Ciclodextrinas/farmacologia
20.
Kyobu Geka ; 75(5): 377-381, 2022 May.
Artigo em Japonês | MEDLINE | ID: mdl-35474203

RESUMO

Here we report a case of total aortic arch replacement for typeⅠendoleak after thoracic endovascular aortic repair( TEVAR) using the concomitant chimney graft technique. An 81-year-old man was admitted with sudden back pain. Six years prior, he had undergone TEVAR for treatment of a distal aortic arch aneurysm. Preoperative computed tomography revealed an 80-mm-diameter arch aneurysm and typeⅠendoleak. The back pain was caused by impending aneurysmal rupture;therefore, urgent total arch replacement was performed. One stent was cut from the main endograft and anastomosed to its distal side. The bare metal stent in the left common carotid artery was removed and reconstructed at a healthy distal artery. Postoperative computed tomography revealed no endoleak of the aneurysm, and the patient's postoperative course was uneventful.


Assuntos
Aneurisma da Aorta Torácica , Implante de Prótese Vascular , Procedimentos Endovasculares , Idoso de 80 Anos ou mais , Aneurisma da Aorta Torácica/diagnóstico por imagem , Aneurisma da Aorta Torácica/cirurgia , Prótese Vascular , Implante de Prótese Vascular/métodos , Procedimentos Endovasculares/métodos , Humanos , Masculino , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...